TABLE OF CONTENTS

SECTION 1 CAUTIONS—READ FIRST! .. 1

SECTION 2 WILDEN PUMP DESIGNATION SYSTEM 2

SECTION 3 HOW IT WORKS—PUMP & AIR DISTRIBUTION SYSTEM 3

SECTION 4 DIMENSIONAL DRAWING ... 4

SECTION 5 PERFORMANCE
 HS400S Performance
 TPE-Fitted ... 5
 Suction-Lift Curve ... 6

SECTION 6 SUGGESTED INSTALLATION, OPERATION & TROUBLESHOOTING 7

SECTION 7 DISASSEMBLY / REASSEMBLY ... 10
 Air Valve / Center Section Disassembly 15
 Reassembly Hints & Tips .. 17

SECTION 8 EXPLODED VIEW & PARTS LISTING
 HS400S Metal ... 18
CAUTION: Do not apply compressed air to the exhaust port — pump will not function.

CAUTION: Do not over-lubricate air supply — excess lubrication will reduce pump performance. Pump is pre-lubed.

TEMPERATURE LIMITS:
- Polypropylene: 0°C to 79°C (32°F to 175°F)
- PVDF: -12°C to 107°C (10°F to 225°F)
- PFA: -7°C to 107°C (45°F to 225°F)
- Neoprene: -18°C to 93°C (0°F to 200°F)
- Buna-N: -12°C to 82°C (10°F to 180°F)
- EPDM: -51°C to 138°C (-60°F to 280°F)
- Viton® FKM: -40°C to 177°C (-40°F to 350°F)
- Wil-Flex™: -40°C to 104°C (-40°F to 220°F)
- Polyurethane: -12°C to 66°C (10°F to 150°F)
- Polytetrafluoroethylene (PTFE): 4°C to 104°C (40°F to 220°F)
- Nordel® EPDM: -51°C to 138°C (-60°F to 280°F)
- Nylon: -18°C to 93°C (0°F to 200°F)
- Acetal: -29°C to 82°C (10°F to 180°F)
- SIPD PTFE with Neoprene-backed: 4°C to 93°C (40°F to 200°F)
- SIPD PTFE with EPDM-backed: 4°C to 137°C (40°F to 280°F)
- Geolast®: -40°C to 82°C (-40°F to 180°F)

NOTE: Not all materials are available for all models. Refer to Section 2 for the material options available for your pump.

CAUTION: When choosing pump materials, be sure to check the temperature limits for all wetted components. Example: Viton® has a maximum limit of 177°C (350°F), but polypropylene has a maximum limit of only 79°C (175°F).

CAUTION: Maximum temperature limits are based upon mechanical stress only. Certain chemicals will significantly reduce maximum safe operating temperatures. Consult Chemical Resistance Guide for chemical compatibility and temperature limits.

WARNING: Prevent static sparking — If static sparking occurs, fire or explosion could result. Pump, valves and containers must be grounded to a proper grounding point when handling flammable fluids and whenever discharge of static electricity is a hazard.

CAUTION: The process fluid and cleaning fluids must be chemically compatible with all wetted pump components. Consult Chemical Resistance Guide.

CAUTION: Do not exceed 82°C (180°F) air inlet temperature for Pro-Flo® SHIFT models.

CAUTION: Pumps should be thoroughly flushed before installing into process lines. FDA- and USDA-approved pumps should be cleaned and/or sanitized before being used.

CAUTION: Always wear safety glasses when operating pump. If diaphragm rupture occurs, material being pumped may be forced out air exhaust.

CAUTION: Before any maintenance or repair is attempted, the compressed air line to the pump should be disconnected and all air pressure allowed to bleed from pump. Disconnect all intake, discharge and air lines. Drain the pump by allowing any fluid to flow into a suitable container.

CAUTION: Blow out air line for 10 to 20 seconds before attaching to pump to make sure all pipeline debris is clear. Use an in-line air filter. A 5μ (micron) air filter is recommended.

NOTE: Before starting disassembly, mark a line from each liquid chamber to its corresponding air chamber. This line will assist in proper alignment during reassembly.

CAUTION: Pro-Flo® SHIFT is available in both single-point exhaust (submersible) and standard (non-submersible) options. Do not use standard Pro-Flo® SHIFT models in submersible applications. Turbo-Flo™ pumps are also available in a single-point exhaust (submersible) configuration.

CAUTION: Tighten all hardware prior to installation.
Section 2

WILDEN PUMP DESIGNATION SYSTEM

HS400S METAL

38 mm (1-1/2”) Pump
Maximum Flow Rate:
227 lpm (60 gpm)

NOTE: MOST ELASTOMERIC MATERIALS USE COLORED DOT FOR IDENTIFICATION.

LEGEND

XHS400S / XXXXX / XXX / XX / XXX / XXX

MODEL
AIR VALVE
AIR CHAMBERS
CENTER BLOCK
DIAPHRAGMS
VALVE BALLS
O-RINGS
VALVE SEAT
SPECIALTY CODE

MATERIAL CODES

MODEL
XHS400S = HIGH PRESSURE SIMPLEX/ATEX

WETTED PARTS
AND OUTER PISTON
AS = ALUMINUM / STAINLESS STEEL

AIR CHAMBERS
A = ALUMINUM

CENTER BLOCK
A = ALUMINUM

AIR VALVE
A = ALUMINUM

DIAPHRAGMS
FWS = SANITARY WIL-FLEX ™
[Santoprene® (Two Orange Dots)]

VALVE BALLS
WF = WIL-FLEX ™
[Santoprene® (Orange Dot)]

VALVE SEAT
A = ALUMINUM

VALVE SEAT O-RINGS
TF = PTFE (White)

SPECIALTY CODES

0320 Single-Point Exhaust
0504 DIN flange

NOTE: MOST ELASTOMERIC MATERIALS USE COLORED DOT FOR IDENTIFICATION.
The Wilden diaphragm pump is an air-operated, positive displacement, self-priming pump. These drawings show flow pattern through the pump upon its initial stroke. It is assumed the pump has no fluid in it prior to its initial stroke.

Figure 1 When air pressure is supplied to the pump, the air valve directs pressure to the back side of the diaphragm A. The compressed air moves the diaphragm away from the center section of the pump. The opposite diaphragm is pulled in by the shaft connected to the pressurized diaphragm. Diaphragm B is on its suction stroke; air behind the diaphragm has been forced out to the atmosphere through the exhaust port. The movement of diaphragm B towards the center section of the pump creates a vacuum within the chamber B. Atmospheric pressure forces fluid into the inlet manifold forcing the inlet valve ball off of its seat. Liquid is free to move past the inlet valve ball and fill the liquid chamber (see shaded area).

Figure 2 Once the shaft has reached the end of its stroke, the air valve redirects pressurized air to the back side of the diaphragm B. This pressurized air is also directed to the opposite side of the diaphragm A through a passageway that is routed through the common shaft and outer piston. The pressurized air forces diaphragm B away from the center section while also pushing diaphragm A to the center section. Diaphragm B now on its discharge stroke. Diaphragm B forces the inlet valve ball onto its seat due to the hydraulic forces developed in the liquid chamber and manifold of the pump. These same hydraulic forces lift the discharge valve ball off of its seat, forcing fluid to flow through the pump discharge. The pressure on diaphragm A creates a force on the shaft that is combined with the pressure from diaphragm B. This total load is transferred to the liquid creating a liquid pressure that is two times greater than the supplied air pressure.

Figure 3 At completion of the stroke, the air valve again redirects air to the back side of the diaphragm A, which starts diaphragm B on its exhaust stroke. As the pump reaches its original starting point, each diaphragm has gone through one exhaust and one discharge stroke. This constitutes one complete pumping cycle. The pump may take several cycles to completely prime depending on the condition of the application.
DIMENSIONS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>METRIC (mm)</th>
<th>STANDARD (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>343</td>
<td>13.5</td>
</tr>
<tr>
<td>B</td>
<td>79</td>
<td>3.1</td>
</tr>
<tr>
<td>C</td>
<td>335</td>
<td>13.2</td>
</tr>
<tr>
<td>D</td>
<td>531</td>
<td>20.9</td>
</tr>
<tr>
<td>E</td>
<td>605</td>
<td>23.8</td>
</tr>
<tr>
<td>F</td>
<td>122</td>
<td>4.8</td>
</tr>
<tr>
<td>G</td>
<td>325</td>
<td>12.8</td>
</tr>
<tr>
<td>H</td>
<td>48</td>
<td>1.9</td>
</tr>
<tr>
<td>J</td>
<td>132</td>
<td>5.2</td>
</tr>
<tr>
<td>K</td>
<td>320</td>
<td>12.6</td>
</tr>
<tr>
<td>L</td>
<td>531</td>
<td>20.9</td>
</tr>
<tr>
<td>M</td>
<td>244</td>
<td>9.6</td>
</tr>
<tr>
<td>N</td>
<td>206</td>
<td>8.1</td>
</tr>
<tr>
<td>P</td>
<td>152</td>
<td>6.0</td>
</tr>
<tr>
<td>R</td>
<td>170</td>
<td>6.7</td>
</tr>
<tr>
<td>S</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>T</td>
<td>150 DIA.</td>
<td>5.0 DIA.</td>
</tr>
<tr>
<td>U</td>
<td>110 DIA.</td>
<td>3.9 DIA.</td>
</tr>
<tr>
<td>V</td>
<td>18 DIA.</td>
<td>0.6 DIA.</td>
</tr>
</tbody>
</table>

Note:
- DIN (mm) ANSI (inch)
- LW0287 REV. A
Section 5

PERFORMANCE

HS400S ALUMINUM
TPE-FITTED

Height ... 605 mm (23.8")
Width ... 343 mm (13.5")
Depth ... 320 mm (12.6")
Ship Weight27 kg (60 lbs)
Air Inlet 19 mm (3/4")
Inlet .. 38 mm (1-1/2")
Outlet .. 38 mm (1-1/2")
Suction Lift 1.1 m Dry (3.6")

9.0 m Wet (29.5")

Disp. per Stroke 0.26 L (0.07 gal)¹
Max. Flow Rate 227 lpm (60 gpm)
Max. Size Solids 8.0 mm (5/16")

¹Dispacement per stroke was calculated at
4.8 bar (70 psig) air inlet pressure against a
2.1 bar (30 psig) head pressure.

Example: To pump 45 lpm (12 gpm) against
a discharge head of 4.8 bar (70 psig) requires
4.1 bar (60 psig) and 59 Nm³/h (35 scfm) air
consumption.

Caution: Do not exceed 8.6 bar (125 psig)
air supply pressure.

Flow rates indicated on chart were determined by pumping water.
For optimum life and performance, pumps should be specified so that daily operation
parameters will fall in the center of the pump’s performance curve.
Suction-lift curves are calibrated for pumps operating at 305 m (1,000') above sea level. This chart is meant to be a guide only. There are many variables that can affect your pump’s operating characteristics. The number of intake and discharge elbows, viscosity of pumping fluid, elevation (atmospheric pressure) and pipe friction loss all affect the amount of suction lift your pump will attain.
Wilden pumps are designed to meet the performance requirements of even the most demanding pumping applications. They have been designed and manufactured to the highest standards and are available in a variety of wetted-path materials to meet your chemical resistance needs. Refer to the performance section of this manual for an in-depth analysis of the performance characteristics of your pump. Wilden offers the widest variety of elastomer options in the industry to satisfy temperature, chemical compatibility, abrasion resistance and flex concerns.

The suction pipe size should be at least the equivalent or larger than the diameter size of the suction inlet on your Wilden pump. The suction hose must be non-collapsible, reinforced type as these pumps are capable of pulling a high vacuum. Discharge piping should also be the equivalent or larger than the diameter of the pump discharge which will help reduce friction losses. It is critical that all fittings and connections are airtight or a reduction or loss of pump suction capability will result.

INSTALLATION: Months of careful planning, study and selection efforts can result in unsatisfactory pump performance if installation details are left to chance.

Premature failure and long term dissatisfaction can be avoided if reasonable care is exercised throughout the installation process.

LOCATION: Noise, safety and other logistical factors usually dictate where equipment will be situated on the production floor. Multiple installations with conflicting requirements can result in congestion of utility areas, leaving few choices for additional pumps.

Within the framework of these and other existing conditions, every pump should be located in such a way that six key factors are balanced against each other to maximum advantage.

ACCESS: First of all, the location should be accessible. If it is easy to reach the pump, maintenance personnel will have an easier time carrying out routine inspections and adjustments. Should major repairs become necessary, ease of access can play a key role in speeding the repair process and reducing total downtime.

AIR SUPPLY: Every pump location should have an air line large enough to supply the volume of air necessary to achieve the desired pumping rate. Use air pressure up to a maximum of 8.6 bar (125 psig) depending on pumping requirements.

For best results, the pumps should use a 5µ (micron) air filter, needle valve and regulator. The use of an air filter before the pump will ensure that the majority of any pipeline contaminants will be eliminated.

SOLENOID OPERATION: When operation is controlled by a solenoid valve in the air line, three-way valves should be used. This valve allows trapped air between the valve and the pump to bleed off which improves pump performance. Pumping volume can be estimated by counting the number of strokes per minute and then multiplying the figure by the displacement per stroke.

MUFFLER: Sound levels are reduced below OSHA specifications using the standard Wilden muffler. Other mufflers can be used to further reduce sound levels, but they usually reduce pump performance.

ELEVATION: Selecting a site that is well within the pump's dynamic-lift capability will ensure that loss-of-prime issues will be eliminated. In addition, pump efficiency can be adversely affected if proper attention is not given to site location.

PIPING: Final determination of the pump site should not be made until the piping challenges of each possible location have been evaluated. The impact of current and future installations should be considered ahead of time to make sure that inadvertent restrictions are not created for any remaining sites.

The best choice possible will be a site involving the shortest and straightest hookup of suction and discharge piping. Unnecessary elbows, bends, and fittings should be avoided. Pipe sizes should be selected to keep friction losses within practical limits. All piping should be supported independently of the pump. In addition, the piping should be aligned to avoid placing stress on the pump fittings.

Flexible hose can be installed to aid in absorbing the forces created by the natural reciprocating action of the pump. If the pump is to be bolted down to a solid location, a mounting pad placed between the pump and the foundation will assist in minimizing pump vibration. Flexible connections between the pump and rigid piping will also assist in minimizing pump vibration. If quick-closing valves are installed at any point in the discharge system, or if pulsation within a system becomes a problem, a surge suppressor (SD Equalizer®) should be installed to protect the pump, piping and gauges from surges and water hammer.

If the pump is to be used in a self-priming application, make sure that all connections are airtight and that the suction lift is within the model's ability. NOTE: Materials of construction and elastomer options have an effect on suction lift parameters. Please refer to the performance section for specifics.

When pumps are installed in applications involving flooded suction or suction head pressures, a gate valve should be installed in the suction line to permit closing of the line for pump service.

Pumps in service with a positive suction head are most efficient when inlet pressure is limited to 0.5–0.7 bar (7–10 psig). Premature diaphragm failure may occur if positive suction is 0.7 bar (10 psig) and higher.

SUBMERSIBLE APPLICATIONS: Turbo-Flo™ pumps can be used for submersible applications. Pro-Flo® SHIFT pumps are also available in a single-point exhaust (submersible) configuration.

NOTE: Accu-Flo™ pumps do not have a single-point exhaust option and are not submersible.

ALL WILDEN PUMPS ARE CAPABLE OF PASSING SOLIDS. A STRAINER SHOULD BE USED ON THE PUMP INTAKE TO ENSURE THAT THE PUMP’S RATED SOLIDS CAPACITY IS NOT EXCEEDED.

CAUTION: DO NOT EXCEED 8.6 BAR (125 PSIG) AIR SUPPLY PRESSURE [3.4 BAR (50 PSIG) FOR UL-LISTED MODELS.
NOTE: This illustration is a generic representation of an air-operated double-diaphragm pump.

NOTE: In the event of a power failure, the shut-off valve should be closed, if restarting of the pump is not desirable once power is regained.

AIR-OPERATED PUMPS: To stop the pump from operating in an emergency situation, simply close the shut-off valve (user-supplied) installed in the air supply line. A properly functioning valve will stop the air supply to the pump, therefore stopping output. This shut-off valve should be located far enough away from the pumping equipment such that it can be reached safely in an emergency situation.
OPERATION: The HS400S is pre-lubricated, and does not require in-line lubrication. Additional lubrication will not damage the pump, however if the pump is heavily lubricated by an external source, the pump’s internal lubrication may be washed away. If the pump is then moved to a non-lubricated location, it may need to be disassembled and re-lubricated as described in the DISASSEMBLY/REASSEMBLY INSTRUCTIONS.

Pump-discharge rate can be controlled by limiting the volume and/or pressure of the air supply to the pump. An air regulator is used to regulate air pressure. A needle valve is used to regulate volume. Pump-discharge rate can also be controlled by throttling the pump-discharge by partially closing a valve in the discharge line of the pump. This action increases friction loss which reduces flow rate. (See Section 5.) This is useful when the need exists to control the pump from a remote location. When the pump discharge pressure equals or exceeds the air supply pressure, the pump will stop; no bypass or pressure relief valve is needed, and pump damage will not occur. The pump has reached a “deadhead” situation and can be restarted by reducing the fluid discharge pressure or increasing the air inlet pressure. The Wilden Pro-Flo® SHIFT pumps run solely on compressed air and do not generate heat, therefore your process fluid temperature will not be affected.

MAINTENANCE AND INSPECTIONS: Since each application is unique, maintenance schedules may be different for every pump. Frequency of use, line pressure, viscosity and abrasiveness of process fluid all affect the parts life of a Wilden pump. Periodic inspections have been found to offer the best means for preventing unscheduled pump downtime. Personnel familiar with the pump’s construction and service should be informed of any abnormalities that are detected during operation.

RECORDS: When service is required, a record should be made of all necessary repairs and replacements. Over a period of time, such records can become a valuable tool for predicting and preventing future maintenance problems and unscheduled downtime. In addition, accurate records make it possible to identify pumps that are poorly suited to their applications.

TROUBLESHOOTING

Pump will not run or runs slowly.

1. Ensure that the air inlet pressure is at least 0.4 bar (5 psig) above startup pressure and that the differential pressure (the difference between air inlet and liquid discharge pressures) is not less than 0.7 bar (10 psig).
2. Check air inlet filter for debris (see SUGGESTED INSTALLATION).
3. Check for extreme air leakage (blow by) which would indicate worn seals/bores in the air valve, pilot spool and main shaft.
4. Disassemble pump and check for obstructions in the air passageways or objects that would obstruct the movement of internal parts.
5. Check for sticking check valves. If material being pumped is not compatible with pump elastomers, swelling may occur. Replace check valves with proper elastomers.
6. Check for broken inner piston, which will cause the air valve spool to be unable to shift.
7. Remove plug from pilot spool exhaust.

Pump runs, but little or no product flows.

1. Check for pump cavitation; decrease pump speed to allow thick material to flow into liquid chambers.
2. Verify that vacuum required to lift liquid is not greater than the vapor pressure of the material being pumped (cavitation).
3. Check for sticking check valves. If material being pumped is not compatible with pump elastomers, swelling may occur. Replace check valves with proper elastomers.

Pump air valve freezes.

1. Check for excessive moisture in compressed air. Either install a dryer or hot-air generator for compressed air. Alternatively, a coalescing filter may be used to remove the water from the compressed air in some applications.

Air bubbles in pump discharge.

1. Check for ruptured diaphragm.
2. Check tightness of outer pistons (refer to Section 7).
3. Check tightness of fasteners and integrity of O-rings and seals, especially at intake manifold.
4. Ensure pipe connections are airtight.

Product comes out air exhaust.

1. Check for diaphragm rupture.
2. Check tightness of outer pistons to shaft.
TOOLS REQUIRED:
- 9/16" Wrench
- 3/4" Wrench
- Adjustable Wrench
- Vise equipped w/soft jaws (such as plywood, plastic or other suitable material)

CAUTION: Before any maintenance or repair is attempted, the compressed air line to the pump should be disconnected and all air pressure allowed to bleed from the pump. Disconnect all intake, discharge and air lines. Drain the pump by turning it upside down and allowing any fluid to flow into a suitable container. Be aware of any hazardous effects of contact with your process fluid.

NOTE: All O-rings used in the pump are made of special material and at any sign of hardness should be replaced with only factory-supplied parts.

Step 1
Before starting disassembly, mark a line from each liquid chamber to its corresponding air chamber. This line will assist in proper realignment during reassembly.

Step 2
Using a 3/4" wrench, loosen the discharge manifold from the liquid chambers.

Step 3
Remove the discharge manifold to expose the top-left valve ball.

NOTE: The HS400S pump does not use valve balls in the amplification chamber.

Step 4
Remove the discharge valve ball, valve seat and valve seat O-ring from the left liquid chamber and inspect for nicks, gouges, chemical attack or abrasive wear. Replace worn parts with genuine Wilden parts for reliable performance.

Step 5
To ensure no excessive wear or damage has occurred to the amplification chamber plug O-rings, remove plugs located between top and bottom tee sections and elbows (right side of pump only). Inspect and replace seat plug O-rings if necessary. Install Buna® O-ring on air side of plug and the encapsulated Viton® O-ring on liquid side of plug.

Step 6
Using a 3/4" wrench, loosen the inlet manifold from the liquid chambers.
Step 7
Lift liquid chambers and center section away from inlet manifold to expose left inlet valve ball, valve seat and valve seat O-ring. Inspect for nicks, gouges, chemical attack or abrasive wear.

Step 8
Using a 9/16" wrench, remove the liquid chamber from the center section.

Step 9
The liquid chamber should be removed to expose the diaphragm and outer piston.

Step 10
Using an adjustable wrench, remove the diaphragm assembly from diaphragm shaft by turning counter-clockwise.

Step 11
After loosening and removing the diaphragm assembly, remove opposite liquid chamber.

Step 12
After removing the opposite liquid chamber, the remaining diaphragm assembly and diaphragm shaft can be easily removed.

Step 13
To remove diaphragm assembly from shaft, secure shaft with soft jaws (a vise fitted with plywood, plastic or other suitable material) to ensure shaft is not nicked, scratched or gouged. Using an adjustable wrench, remove diaphragm assembly from shaft. Inspect all parts for wear and replace with genuine Wilden parts, if necessary.
The outer piston on the side of the amplification chamber has an air passageway at the center of the outer piston lug. This air passageway allows air to flow from the opposite air chamber to the amplification chamber. This principle is how the HS400S high-pressure pump achieves a 2:1 ratio of inlet air pressure to discharge pressure. When reassembling the HS400S pump, the outer piston (with the air passageway) has to be positioned on the same side as the amplification chamber. If it is not reassembled correctly, the pump will not operate and process fluid will enter the air distribution system through the air passageway located at the shaft lug.

This same air passageway continues through the diaphragm shaft, exits out of the diaphragm shaft via a 90° turn and into the air chamber located on the wetted side of the pump. The air passageway has to be positioned in the air chamber on the wetted side of the pump, opposite the amplification chamber.
TOOLS REQUIRED:
- 3/16” Hex-Head Wrench
- 1/4” Hex-Head Wrench
- O-ring Pick

CAUTION: Before any maintenance or repair is attempted, the compressed air line to the pump should be disconnected and all air pressure allowed to bleed from the pump. Disconnect all intake, discharge and air lines. Drain the pump by turning it upside down and allowing any fluid to flow into a suitable container. Be aware of any hazardous effects of contact with your process fluid.

AIR VALVE / CENTER SECTION DISASSEMBLY

Step 1
Using a pair of snap-ring pliers, remove the snap ring from pilot sleeve.

Step 2
Using an O-ring pick, remove O-ring from modulator spool.

Step 3
Using the appropriate-sized wrench, loosen and remove the fasteners that attach the air chamber to center section.
Step 4
Lift away air chamber from center section and remove center block gasket. Replace gasket if necessary.

Step 5
Turn assembly over and remove the pilot spool sleeve from the center section.

Step 6
Using an O-ring pick, gently remove the O-ring from the opposite side of the dimpled end of the pilot spool.

Step 7
Gently remove the pilot spool from the sleeve and inspect for nicks, wear or damage. Replace the pilot spool assembly or sleeve O-rings if necessary. During reassembly, never insert the dimpled end of the pilot spool first, this will damage the single urethane O-ring by passing it over the ports in the pilot sleeve.

NOTE: Seals should not be removed from the assembly. Seals are not sold separately.

Step 8
Remove modulator spool from center section. Check for wear to spool or O-rings and replace if necessary.

Step 9
Using the appropriate-sized wrench, loosen the fasteners and lift away remaining air chamber and center block gasket from center section. Replace gasket if necessary.
AIR VALVE / CENTER SECTION DISASSEMBLY

Step 10
Using an O-ring pick, remove the two (2) shaft bushings from center block. Inspect and replace if necessary. Using an O-ring pick, gently remove the two (2) Glyd™ rings from the center block. Inspect and replace if necessary.

Step 11
Using an O-ring pick, remove the two (2) Glyd™ rings from modulator spool bore. Inspect and replace if necessary.

Step 12
Using an appropriate-sized wrench, remove the pilot exhaust muffler. Inspect for damage or contamination and replace if necessary.

Step 13
Using an appropriate-sized hex wrench, loosen and remove the four (4) air valve bolts from center section assembly.

Step 14
Lift away muffler plate and muffler plate gasket from center block. Inspect for wear and replace if necessary. Lift away the air valve assembly and remove air valve gasket. Inspect the gasket and replace if necessary.
Step 1
Remove pilot exhaust muffler in pilot bleed port located at the front of the center block. Install 1/4" NPT pipe plug (00-7010-08) into bleed port.

Step 2
Next, install an optional single-point exhaust air valve gasket (04-2638-52). The single-point air valve gasket can be purchased as a spare part or included with the purchase of a new Pro-Flo® SHIFT pump.

NOTE: Seals should not be removed from the assembly. Seals are not sold separately.
ASSEMBLY:
Upon performing applicable maintenance to the air distribution system, the pump can now be reassembled. Please refer to the disassembly instructions for photos and parts placement. To reassemble the pump, follow the disassembly instructions in reverse order. The air distribution system needs to be assembled first, then the diaphragms and finally the wetted path. The following tips will assist in the assembly process.

- Lubricate air valve bore, center section shaft and pilot spool bore with NLGI grade 2 white EP bearing grease or equivalent.
- Clean the inside of the center section shaft bore to ensure no damage is done to new shaft seals.
- A small amount of NLGI grade 2 white EP bearing grease can be applied to the muffler and air valve gaskets to lubricate gaskets during assembly.
- Make sure that the exhaust port on the muffler plate is centered between the two exhaust ports on the center section.
- Stainless-steel bolts should be lubed to reduce the possibility of seizing during tightening.
- Use a mallet to tap lightly on the large clamp bands to seat the diaphragm before tightening.

SHAFT SEAL INSTALLATION:

PRE-INSTALLATION
- Once all of the old seals have been removed, the inside of the bushing should be cleaned to ensure no debris is left that may cause premature damage to the new seals.

INSTALLATION
The following tools can be used to aid in the installation of the new seals:
- Needle-Nose Pliers
- Phillips Screwdriver
- Electrical Tape

- Wrap electrical tape around each leg of the needle-nose pliers (heat shrink tubing may also be used). This is done to prevent damaging the inside surface of the new seal.
- With a new seal in hand, place the two legs of the needle-nose pliers inside the seal ring. (See Figure A.)
- Open the pliers as wide as the seal diameter will allow, then with two fingers pull down on the top portion of the seal to form a kidney shape. (See Figure B.)
- Lightly clamp the pliers together to hold the seal in the kidney shape. Be sure to pull the seal into as tight of a kidney shape as possible, this will allow the seal to travel down the bushing bore easier.
- With the seal clamped in the pliers, insert the seal into the bushing bore and position the bottom of the seal into the correct groove. Once the bottom of the seal is seated in the groove, release the clamp pressure on the pliers. This will allow the seal to partially snap back to its original shape.
- After the pliers are removed, you will notice a slight bump in the seal shape. Before the seal can be properly resized, the bump in the seal should be removed as much as possible. This can be done with either the Phillips screwdriver or your finger. With either the side of the screwdriver or your finger, apply light pressure to the peak of the bump. This pressure will cause the bump to be almost completely eliminated.
- Lubricate the edge of the shaft with NLGI grade 2 white EP bearing grease.
- Slowly insert the center shaft with a rotating motion. This will complete the resizing of the seal.
- Perform these steps for the remaining seals.

<table>
<thead>
<tr>
<th>Description</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Valve</td>
<td>13.6 N•m (120 in-lb)</td>
</tr>
<tr>
<td>Center Block to Air Chamber</td>
<td>27.1 N•m (20 ft-lb)</td>
</tr>
<tr>
<td>Liquid Chamber to Air Chamber, Aluminum</td>
<td>47.5 N•m (35 ft-lb)</td>
</tr>
<tr>
<td>Manifolds, T-Section, Aluminum</td>
<td>27.1 N•m (20 ft-lb)</td>
</tr>
</tbody>
</table>
ALL CIRCLED PART IDENTIFIERS ARE INCLUDED IN CONVERSION KIT (See Section 9).
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Qty</th>
<th>XHS400S/ASAAA P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR DISTRIBUTION COMPONENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Air Valve Assembly, Pro-Flo® SHIFT</td>
<td>1</td>
<td>04-2039-01</td>
</tr>
<tr>
<td>2</td>
<td>O-Ring, End Cap (-225, Ø1.859" x Ø.139")</td>
<td>2</td>
<td>04-2390-52-700</td>
</tr>
<tr>
<td>3</td>
<td>End Cap</td>
<td>2</td>
<td>04-2340-01</td>
</tr>
<tr>
<td>4</td>
<td>Screw, SHC, Air Valve (1/4"-20 x 4 1/2")</td>
<td>6</td>
<td>01-6000-03</td>
</tr>
<tr>
<td>5</td>
<td>Muffler Plate, Pro-Flo® SHIFT</td>
<td>1</td>
<td>04-3189-01</td>
</tr>
<tr>
<td>6</td>
<td>Gasket, Muffler Plate, Pro-Flo® SHIFT</td>
<td>1</td>
<td>04-3509-52</td>
</tr>
<tr>
<td>7</td>
<td>Gasket, Air Valve, Pro-Flo® SHIFT</td>
<td>1</td>
<td>04-2639-52</td>
</tr>
<tr>
<td>8</td>
<td>Center Block Assembly, Pro-Flo® SHIFT</td>
<td>1</td>
<td>15-3129-01</td>
</tr>
<tr>
<td>9</td>
<td>Pilot Sleeve Assembly</td>
<td>1</td>
<td>04-3880-99</td>
</tr>
<tr>
<td>10</td>
<td>Pilot Spool Retaining O-Ring (-009, Ø.208" x Ø.070")</td>
<td>2</td>
<td>04-2650-49-700</td>
</tr>
<tr>
<td>11</td>
<td>Seal, Shaft</td>
<td>2</td>
<td>15-3210-55-225</td>
</tr>
<tr>
<td>12</td>
<td>Bushing, Shaft</td>
<td>2</td>
<td>15-3306-13</td>
</tr>
<tr>
<td>13</td>
<td>Gasket, Center Block Pro-Flo V™</td>
<td>2</td>
<td>04-3529-52</td>
</tr>
<tr>
<td>14</td>
<td>O-Ring, (-210, Ø.734" x Ø.139")</td>
<td>2</td>
<td>04-3209-49</td>
</tr>
<tr>
<td>15</td>
<td>Air Control Spool</td>
<td>1</td>
<td>04-3859-03</td>
</tr>
<tr>
<td>16</td>
<td>Air Control Spool Retaining O-Ring (-114, Ø.612" x Ø.103")</td>
<td>2</td>
<td>04-3879-50</td>
</tr>
<tr>
<td>17</td>
<td>Air Chamber, Pro-Flo V™</td>
<td>2</td>
<td>04-3694-01</td>
</tr>
<tr>
<td>18</td>
<td>Screw, HSFS (3/8"-16 x 1")</td>
<td>8</td>
<td>71-6250-08</td>
</tr>
<tr>
<td>19</td>
<td>Retaining Ring</td>
<td>2</td>
<td>04-3890-03</td>
</tr>
<tr>
<td>20</td>
<td>Grounding Screw, (10-32 x 1/2") Self Tapping</td>
<td>1</td>
<td>04-6345-08</td>
</tr>
<tr>
<td>21</td>
<td>Muffler 1/4" MNPT</td>
<td>1</td>
<td>15-3510-99R</td>
</tr>
<tr>
<td>22</td>
<td>Bushing, Reducer, 1-1/2" MNPT to 1" FNPT</td>
<td>1</td>
<td>04-6959-08</td>
</tr>
<tr>
<td>23</td>
<td>Muffler, 1/4" MNPT</td>
<td>1</td>
<td>04-3240-07</td>
</tr>
<tr>
<td>WETTED PATH COMPONENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Liquid Chamber</td>
<td>2</td>
<td>04-4980-01</td>
</tr>
<tr>
<td>25</td>
<td>Washer (3/8")</td>
<td>16</td>
<td>15-6740-08-50</td>
</tr>
<tr>
<td>26</td>
<td>Screw, HHC (3/8"-16 x 1-1/4")</td>
<td>16</td>
<td>04-6140-08</td>
</tr>
<tr>
<td>27</td>
<td>Discharge Elbow</td>
<td>2</td>
<td>04-5250-01</td>
</tr>
<tr>
<td>28</td>
<td>Washer (1/2")</td>
<td>40</td>
<td>04-6730-08</td>
</tr>
<tr>
<td>29</td>
<td>Screw, HHC (1/2"-13 x 1-1/2")</td>
<td>8</td>
<td>04-6180-08</td>
</tr>
<tr>
<td>30</td>
<td>Screw, HHC (1/2"-13 x 2")</td>
<td>16</td>
<td>04-6210-08</td>
</tr>
<tr>
<td>31</td>
<td>Hex Nut (1/2"-13)</td>
<td>16</td>
<td>15-6420-08</td>
</tr>
<tr>
<td>32</td>
<td>Tee, Section ANSI, XHS400S</td>
<td>2</td>
<td>04-5181-01</td>
</tr>
<tr>
<td>33</td>
<td>Tee, Section DIN, XHS400S</td>
<td>2</td>
<td>04-5186-03</td>
</tr>
<tr>
<td>34</td>
<td>Inlet Elbow</td>
<td>2</td>
<td>04-5210-01</td>
</tr>
<tr>
<td>GASKETS/VALVE BALLS/VALVE SEATS/VALVE O-RINGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Manifold O-Ring (-237) (Ø3.359" x Ø.139")</td>
<td>4</td>
<td>04-1370-55</td>
</tr>
<tr>
<td>35</td>
<td>Valve Seat O-Ring (-232) (Ø2.734" x Ø.139")</td>
<td>2</td>
<td>04-1205-55</td>
</tr>
<tr>
<td>36</td>
<td>Seat Valve</td>
<td>2</td>
<td>04-1125-01</td>
</tr>
<tr>
<td>37</td>
<td>Ball, Valve</td>
<td>2</td>
<td>04-1080-58</td>
</tr>
<tr>
<td>38</td>
<td>Gasket, Tee Section Manifold</td>
<td>2</td>
<td>04-1235-55</td>
</tr>
<tr>
<td>39</td>
<td>O-Ring (Ø1.484" x Ø.139") Viton®</td>
<td>2</td>
<td>05-1370-60</td>
</tr>
<tr>
<td>40</td>
<td>Seat, Plug, XHX400S</td>
<td>2</td>
<td>04-1135-01</td>
</tr>
<tr>
<td>41</td>
<td>O-Ring (Ø1.484" x Ø.139") Buna-N</td>
<td>2</td>
<td>02-1230-52</td>
</tr>
<tr>
<td>FULL-STROKE TPE COMPONENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Shaft</td>
<td>1</td>
<td>04-3845-08</td>
</tr>
<tr>
<td>43</td>
<td>Piston, Inner</td>
<td>2</td>
<td>15-3750-01</td>
</tr>
<tr>
<td>44</td>
<td>Diaphragm, Primary</td>
<td>2</td>
<td>04-1011-57</td>
</tr>
<tr>
<td>45</td>
<td>Piston, Outer</td>
<td>1</td>
<td>15-4600-03</td>
</tr>
<tr>
<td>46</td>
<td>Piston, Outer</td>
<td>1</td>
<td>04-4565-03</td>
</tr>
</tbody>
</table>

*See elastomer chart - Section 9

1 Air Valve Assembly includes items 2 and 3.
2 Center Block Assembly includes items 11, 12, 14, 15 and 16.
All boldface items are primary wear parts.
WARRANTY

Each and every product manufactured by Wilden Pump and Engineering, LLC is built to meet the highest standards of quality. Every pump is functionally tested to insure integrity of operation.

Wilden Pump and Engineering, LLC warrants that pumps, accessories and parts manufactured or supplied by it to be free from defects in material and workmanship for a period of five (5) years from date of installation or six (6) years from date of manufacture, whichever comes first. Failure due to normal wear, misapplication, or abuse is, of course, excluded from this warranty.

Since the use of Wilden pumps and parts is beyond our control, we cannot guarantee the suitability of any pump or part for a particular application and Wilden Pump and Engineering, LLC shall not be liable for any consequential damage or expense arising from the use or misuse of its products on any application. Responsibility is limited solely to replacement or repair of defective Wilden pumps and parts.

All decisions as to the cause of failure are the sole determination of Wilden Pump and Engineering, LLC.

Prior approval must be obtained from Wilden for return of any items for warranty consideration and must be accompanied by the appropriate MSDS for the product(s) involved. A Return Goods Tag, obtained from an authorized Wilden distributor, must be included with the items which must be shipped freight prepaid.

The foregoing warranty is exclusive and in lieu of all other warranties expressed or implied (whether written or oral) including all implied warranties of merchantability and fitness for any particular purpose. No distributor or other person is authorized to assume any liability or obligation for Wilden Pump and Engineering, LLC other than expressly provided herein.

Please print or type and fax to Wilden

<table>
<thead>
<tr>
<th>Item #</th>
<th>Serial #</th>
</tr>
</thead>
</table>

Company Where Purchased

YOUR INFORMATION

<table>
<thead>
<tr>
<th>Company Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Industry</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Street Address</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Postal Code</th>
<th>Country</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telephone</th>
<th>Fax</th>
<th>E-mail</th>
<th>Web Address</th>
</tr>
</thead>
</table>

Number of pumps in facility? ______________ Number of Wilden pumps? ______________

Types of pumps in facility (check all that apply): □ Diaphragm □ Centrifugal □ Gear □ Submersible □ Lobe

□ Other

Media being pumped? ____________________________

How did you hear of Wilden Pump? □ Trade Journal □ Trade Show □ Internet/E-mail □ Distributor

□ Other

Once complete, fax to (909) 783-3440

Note: Warranty Void if Page is Not Faxed to Wilden

Wilden Pump & Engineering, LLC